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Some Approximate Solutions
to the Discrete Master Equation
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Recent mathematical devclopments on approximate diffusionlike solutions
to the master equation are summarized. The technique is applied to two
master equations of physical interest—one that describes the phenomenon
of superradiance and a second that characterizes gencration-recombination
noise in semiconductors. For this second case, some previously obtained
equilibrium results are found and the extension of these results to finite
times is given,
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There are few gencral mathematical techniques known for the solution of
large classes of master equations, the best known of thesc being the method
of generating functions and the method of spectral decomposition for tem-
porally homogencous processes.? Other approximate tcchniques have been
applied to problems in neutron thermalization and are discussed in some
detail in the monograph by Williams.® Recently, some attention has been
given by mathcmaticians to asymptotic solutions to master equations that
arise from stochastic modcls that are characterized by large population
sizes®~10_ It is the purpose of this paper to summarize some results of the
mathematical analysis and in particular to apply it to two master equations
that have appeared in the literature of physics. Although the results that are
obtained for these particular cxamples arc themselves of interest, the more
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general applicability of the technique in physical problems is of greater
interest.

The first of the equations to be discussed is the master equation des-
cribing the phenomenon of superradiance, that is, the radiation of photons
from a collection of two-level atoms first analyzed by Dicke®? and more
recently discussed by a number of authors.2-1% et N be the total number
of available atoms, let p,(f) be the probability that there are n atoms in an
excited state, and let I be the radiation rate from a single atom in the cavity.
Then, under assumptions carefully enumerated by Bonifacio er al.,/'¥ the
equations satisfied by p,(f) read

ﬁ77(t) T &1 Pus1 — 8n Pr - n = l= 2""’ N (l)

where g, — I(N -~ 1 - n)and N is the total number of atoms in the system.
We shall be interested in the solution to this set of cquations in the limit of
large N. Although a solution to Eq. (1) in terms of Laplace transforms is
possible, the results are quite complicated and not very casy to use. It is of
some incidental interest that Eq. (1) describes what is known as the simple
epidemic and has been in the literature of biometrics for approximately
twenty years.(16-19
In order to proceed with the analysis of Eq. (1), we note that a naive
first approximation would be the so-called deterministic approximation in
which one assumes that the number of excited atoms m(t) decays according
to?
m(ty = —Im(t)[N — m(t)] (2)

This equation has the solution
m(r) = Nm(0) e="/[N — m(0)(1 — e)] 3)

in which = = INt. Since this approximation is only reasonable when m(7) is
large, we define

p(r) = m(r)IN = pye /[l - py(l — e77)] )

where p(0) —= p, . When p, == 1, that is, when all atoms arc initially excited,
onc must usc the more accurate expression for p(7)

p(r) = (N + D/(N 5 €) ~ Ni(N + e7) %)

as Eq. (4) reduces to a constant for p, = 1. Since p(0) < 1, the function p(7)
remains bounded by 1 for all time. The approximation of this paper, sug-

2 More properly, Eq. (2) should read m ~= —Im(/){N¥N 4+ 1 — m(¢)]. This detail is only
important when m(0) - - N.
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gested by the formulation given by McNeil,®" is based on the following
representation of mi(7), now assumed to be a random variable:

m(r) = Np(v) + Z vVIN (6)

where the first term on the right is the deterministic result and the second is
the fluctuating term assumed to be proportional to N'/2 [i.e., Z is assumed
to be O(1)]. We next derive an equation for the characteristic function

H(0, 7) = E explifz(1)]
= {exp[—ifp(r) V' N]} E expliOm(r)/\'N]

N

representing the parameter [ as x/N, where « is O(1). This scaling of 7 can be
motivated by referring to Eq. (3), in which time occurs in the dimensionless
combination NIt

The function £ exp[i@M(7)/v/N] is just the gencrating function

A6, 7) = Y p, exp(ibnjr/N) (8)
n -0

by definition, and satisfies

Hence, by Eq. (7), the function (8, 7) is the solution of

°‘/‘ + BN 25y
o ) = e (B

+ N (5 ;gf - 2ipN1r2 “\,'—--" Ne*)) (10)

If we now expand the term exp{ —if/v/N) into a Taylor series in 6 and collect
the coefficients of various powers of N, we find

O(NY2)term:  i04[p - p(1 — p)] — O (11a)
O(1) term: l/} + 01 -~ 2p(7)] — 1/1 — %p(f)[l — p(n)] ¢ (11b)

Further terms are O(N-!/?) or smaller. Equation (11a) is just seen to be
equivalent to the deterministic equation. To solve Eq. (11b), we substitute a
trial solution of the form

B0, 7) = exp[—0%1(7)/2] (12)
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where I'(7) is to be determined. The function I'(7) is found to satisfy
I(r) = 201 — 2p(m)] I(7) = p(n)[1 — p(7)] (13)
subject to I'(0) == I', . The solution to this equation is found to be

Iy po(l — pp) e®
() — 0 - Po 0
O = T T pe " 0 — o+ pot )

X (1 — po)? (€7 — 1) + 2po(1 — pg) 7 -1 poP(} — )] (14)

for p, < 1 and
I'(r) = [Ne=#/(Ne=" + 1)!][IN¥1 -e™) + 2N(7-1 +e ") + e -1 —7]
(15)

for p, — 1, where we have neglected terms that are O(1/N). It follows from
the representation of Eq. (7) that p,, is given by

pu~(12m) [ expl - Ng?T(n)/2] explilNp — m) ¢1 dep

~ (1/27) J’i} exp[— Ng2T'()/2] cos[Np(r) — n] @ de
= [1/2#N)'2 I'(7)] exp{—[n — Np(r)F/(2NI(7))} (16)

that is to say, the probability distribution is Gaussian, pcaked at the deter-
ministic mean Np(7), with a variance given by

o = NI'(7) (17

This function shows an initial broadening and a final sharpening of the peak
as more and more atoms leave the excited state. The normalized mean
intensity <J(¢)>/1 can be found directly in the present approximation from
the expression for (8, 7). The definition of {I(¢)>/I is

L@ —= Z gaPa(t) = 3 (N ~- 1 — n) py(t)

n

= —i(Nlr‘Z + N2 i (6 exp(ipf v/ N)]

8=0+

- N s 6 explipd VA

~ N2p(n)[1 — p(r)] — Nlp(r) — I'(7)] (18)
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Since I = «/N, we have for {I(1)).

(7)) — [xNpo(l — po) e™/(1 — py — pee™")*] — O(1)
- 10) e/(pe{1 -+ [HO)xNpy] }) (19)

where I(0) is the initial intensity.

In the limit p, == 1, this reduces to the expression derived by Degiorgio
and Ghielmetti."® Notice that the first term on the right-hand side can be
derived from the deterministic theory, while the contribution from the more
accuratc stochastic theory is of lower order in N. In the same way that we
have derived an expression for the relative mean intensity, we can calculate
the relative variance

A7) = (67(_:'»)2_ 2 8n18nPu(T) — 1

N2
(20)

= 6 - 6p b1 — 1 — 4y + 22D 0 ()

which goes to zero in the limit of large N. Thus, as is the case in the stochastic
theory of chemical reactions,®*2" there are no macroscopic fluctuations that
can be attributed to the stochastic nature of the system for N sufficiently
large.

It is of peripheral interest that in the present diffusion approximation,
the expected number of excited atoms is {n> = Np, i.c., it is equal to the
deterministic result. A more accurate calculation leads to correction terms in
powers of N1, and in fact, one can derive an asymptotic expansion for the
moments of the form

() (2)

= 0 e B
Mn = Hp T N i N2 | (21)

in which the u& corresponds to results of a deterministic theory and the
w'? are higher-order corrections that can be calculated recursively. Because
these corrections are not important in the context of the present phenomena,
details of the calculation are deferred to the appendix.

The second example to be analyzed in the present framework is the
master equation describing generation-recombination noise in two-level
semiconductors. The relcvant equations were derived by Burgess®223 and a
discussion of them is to be found in the rcview article by van Vliet
and Fassett.®® In this system, there arc two possible cnergy levels for a fixed
number N of clectrons. Let n(r) clectrons be the (random) number of electrons
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in one of the energy levels at time ¢ and let p(z) -= Pr{n(t) = r}. The master
equation describing the dynamics of this type of noise has the general form

Pn = g(n - 1) Pnoy + r(n + l)pn S [g(n) + r(”)]pn (22)

where g(n) and r(n) are time-indcpendent rate constants, thc generation and
recombination rates, respectively. Typical functional dependences of these
ratcs are

r(n) = Ans, g(n) = B(N — n)® (23)

where A, B, and s are constants. For the problems discussed in the literature,
the parameter s has either been 1 or 2. Equation (22) differs from Eq. (1) in
that transitions are allowed in both dircctions in the noise problems. The
quantities of principal interest are n(oc), o¥(cc) = ([n(0) — {n(0)>]*>, and
the time-dependent autocorrelation function for the random variable
n(t) — n(oo). Heuristic approximations to these quantities have been derived
by Burgess and Van Vliet and Fassett that arc valid in the limit of large N.
The results assume that r(j) and g(j) are analytic functions of j and are
summarized as follows: {n(<0)> is found as the root of

glmy) = rlm) (24)
o? is given by
o? = r(dm)/[r'((n>) — g'(Km)] (25)

and the autocorrelation function of the random variable n(7) - n(%0) is
approximated by

Cir) =%, T —=[r'(m)—gm)™ (26)

To my knowledge, these approximate results have not been checked by other
means.

Rather than repeat the analysis corresponding to Egs. (10) and (11), I
will merely quote the results given by Stone®® and Iglehart.!¥ These are
that, provided g(x) and r(b) have the asymptotic (in N) forms

g@N -- x V'N) = «(a) N + Bi(a) x V'N + O(1)
r@aN -+ x VN) = «(a) N + Bs(a) x VN + 0(1)

@7

the distribution of the random variable
7 = [n(t) — aN)JV'N (28)

converges as N — oo to an Ornstein—-Uhlenbeck process whose probability
density p is the solution to

~ Opfot = o(a)(@p/ex°) + [Ba(a) — Bu@)](é/ex)(xp) (29
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The solution to this equation is a Gaussian function with a mean and variance
given by
E{z(t)} - z(0) o 0t

var{z(t)} = [a/(B, — B[ — —)(32--;1»]

(30)

A heuristic proof of these results can be given that parallels that of the
derivation of Eq. (11). In order to see how the results can be applied in a
specific case, let us consider the forms for generation and recombination rates
shown in Eq. (23).

It is straightforward to calculate from Eq. (23) that

r(aN — x x/'/V) —i AN%[@® = (sxa* Y\ N) — ]
glaN -} x V/N) = BN<{(1 - a)* — [sx(1 -- a)*"Y\'N] - -}

(31)

Hence, in order for Eq. (27) to be satisfied, we must assume that 4 and B are
scaled like 4 = A,N'-sand B = ByN'~%, in which A, and B, are O(1). This
scaling procedurc is also suggested by an examination of the dcterministic
kinetic equations. Since the cocfficients of N in Eq. (27) arc equal, the con-
stant g is determined from A)* @ =By/*(1 — a), or

a = By{(Ag" -+ By (32)
so that
Ma)  AoByi(Ay™ -~ ByY 3
Ba) = —sBy(1 — a)*, Bula) == sAga® !
With these results, we can calculate for the mean and variance of #(f)
n(t)y = aN -~ [m(0) — alN] exp[—sAdpa /(1 — a)] )
(

(1) = [Na(l — a)/s}{1 ~ exp[—2a*'Ayst/(l — a)]}

Furthermore, the autocorrelation function calculated from Eq. (34) agrees
with the result given by van Vliet and Fassett®? and obtained by other means.
The results for <n(t)> and o%(¢) given in Eq. (34) agree with the approxima-
tions derived by Burgess for # = oo and extend his results to finite values of
time.

It is evident from the examples that we have just discussed that the
diffusion approximation can be used to solve some quite general master
equations provided that the number of levels tend to infinity and provided that
the rates arc properly scaled. For example, the method just discussed is
readily extended to the case of noise in three-level semiconductors for which
equilibrium variances have been calculated.®® The theory so derived would



186 George H. Weiss

allow one to develop a full time-dependent theory rather than being restricted
to the asymptotic regime.

The method outlined here is related to that of van Kampen,®” truncated
at his first approximation. It is not clear that his higher approximations are
correct because they do not appear to allow the analog of Eq. (21). However,
it may also be the case that most physical problems have such large numbers
involved that little more than a deterministic approach-2%) is required for
the analysis. This is no longer true for genetic or ecological applications,
where population sizes are order of magnitudes lower than atomic numbers.

APPENDIX: EXPANSION OF THE MOMENTS
OF EQ. (1) IN POWERS OF N~!

In this appendix, we discuss higher approximations in the calculation
of moments of the supperradiance equation. That is to say, the expectation
{n) calculated from Eq. (16) is <n> = Np, which is just the rcsult expected
from a deterministic equation for n. When small numbcrs of atoms are
involved, we expect an expansion of the form

{ny = Np =+ pi + (po/N) + (ps/N?) = .

Bailey!® has given an analogous calculation for the simple epidemic; the
present calculation represents a considerable simplification over Bailey’s
technique.

The analysis starts by considering the generating function

w&ﬂ:fpmww (A1)

n=0

where 7 == NIt, as in the text. This function satisfics the cquation

oU oU  @U
= — _.N{(e0/N — e,
e~ N D (G~ )
e 62 U U
- ) o
If we now assume an expansion for U in the form
U = Uy + (UJN) + (UGN + - (A3
and cquate successive powers of N1, we find that
oU, 8U, . U,
= (g ) (A
&U, eU, | Uy _ 828U, | 82U,
G0t W) =3 () e
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If we assume that
UO(BS 0) = U(H’ 0) - e-"oU/N’ Ul(e’ 0) = U‘Z(Hs 0) — 0 (AS)
then the solution to Eq. (A.4a) is

Uy8, 7) = e %ot (A.6)

where p(7) is given in Eq. (4) of the text. Thus, Uy(d, ) gives the result of the
deterministic, or kinetic, theory. Higher-order terms in the scquence of
Eq. (A.4) are all of the form

U cU  &U

where, at any order, the function F(8, 7) is known from lower-order terms.
Thus, for example,

(2t - ) -

2
k@, 7= - >\ = — -~ p(1) e {A.8)

Although it 1s possible to derive a solution by Laplace transforms, the struc-
ture of Eq. (A.8) suggests that we substitulc a solution of the form

U8, 1) = A(7) Be=) -\. B(7) fPe—betn (A.9)
It is easy to verify that A(r) and B(r) must be the solutions to

B =21 - 2p(m)] B = p(n)[l - p(7))}2

. {A.10)
A1 —2p(7)] 4 = —2B

subject to A(0) — B(0) = 0. The solutions to these equations are

] R T VAT
B(x) = = ‘exp [—27 4 pw) du]f [ p@Il — p(e)]

21 <0 Vo

x exp [0 — 4 J p(@') d'] e (A.11)

0

A(r) — =2 3exp [—T -2 f; p(v) dv]; j; B(v) exp [L —2 J; p(T”) dv’] dv

The combination of Egs. (A.9) and (A.1l) constitutes a gencralization of
Bailey’s results and allows the proper calculation of N-! corrections to the
moments.
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