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Some Approximate Solutions 
to the Discrete Master Equation 
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Recent mathematical developments on approximate diffusionlike solutions 
to the master equation are summarized. The technique is applied to t w o  

master equations of physical interest--one that describes the phenomenon 
of superradiance and a second that characterizes generation-recombination 
noise in semiconductors. For this second case, some previously obtained 
equilibrium results are found and the extension of these results to finite 
times is given. 

KEY W O R D S :  Stochastic processes; master equation; diffusion 
approximation. 

There are few general mathematical techniques known for the solution of 
large classes of master equations, the best known of  these being the method 
of generating functions and the method of spectral decomposition for tem- 
porally homogeneous processes. ~t) Other approximate techniques have been 
applied to problems in neutron thermalization and are discussed in some 
detail in the monograph by Williams. ~2~ Recently, some attention has been 
given by mathematicians to asymptotic solutions to master equations that 
arise from stochastic models that are characterized by large population 
sizes~3-~~ It is the purpose of this paper to summarize some results of  the 
mathematical analysis and in particular to apply it to two master equations 
that have appeared in the literature of  physics. Although the results that are 
obtained for these particular examples are themselves of  interest, the more 
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general applicability o f  the technique in physical problems is o f  greater 
interest. 

The first o f  the equations to be discussed is the master equation des- 
cribing the phenomenon  of  superradiance, that is, the radiation o f  photons  
from a collection o f  two-level a toms first analyzed by Dicke ~m and more 
recently discussed by a number  o f  authors/12-I~1 Let N be the total number  
o f  available atoms, let p , ( t )  be the probabili ty that there are n a toms in an 
excited state, and let I be the radiation rate from a single a tom in the cavity. 
Then, under assumptions carefully enumerated by Bonifacio et  al . ,  ~4~ the 
equations satisfied by p n ( t )  read 

P,,( t )  --: g,, ,1P,~+1 - -  g~ P , ,  n : :  1, 2, . . . ,  N (1) 

where gn := L~(N - .  1 -- n) and N is the total number  o f  a toms in the system. 
We shall be interested in the solution to this set o f  equations in the limit of  
large N. Although a solution to Eq. (1) in terms of  Laplace transforms is 
possible, the results are quite complicated and not very easy to use. It is o f  
some incidental interest that  Eq. (1) describes what is known as the simple 
epidemic and has been in the literature o f  biometrics for approximately 
twenty years. C~'~-lg) 

In order to proceed with the analysis o f  Eq. (1), we note that a naive 
first approximat ion would be the so-called deterministic approximat ion in 
which one assumes that the number  o f  excited atoms re ( t )  decays according 
to z 

~h(t) = - - h n ( t ) [ N  - -  re(t)] (2) 

This equation has the solution 

re(r) = - :  Nm(O)  e-*/[N -- m(0)(l --  e - ' ) ]  (3) 

in which ~r == I N t .  Since this approximat ion is only reasonable when m(~') is 
large, we define 

p( r )  = m ( ' r ) / N  = p , , e - ' / [ l  -- p0(I -- e - ' ) ]  (4) 

where p(0) - :  P0 �9 When P0 - 1, that is, when all a toms are initially excited, 
one must use the more accurate expression for p(~-) 

p(7) . :  (N -i- 1)/(N + e')  ~ N / ( N  _ e ~) (5) 

as Eq. (4) reduces to a constant  for P0 -- 1. Since p(0) ~< 1, the function P0-) 
remains bounded by 1 for all time. The approximat ion of  this paper, sug- 

�9 z More properly, Eq. (2) should read rh ~ --lm(t)[N + 1 -- re(t)]. This detail is only 
important when m(0) -- N. 
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gested by the formulation given by McNeil/'~r is based on the following 
represcntation of re(r), now assumed to be a random variable: 

m 

re(r) = Np(r) + Z V N (6) 

where the first term on the right is the deterministic result and the second is 
the fluctuating term assumed to be proportional to N z/2 [i.e., Z is asst, med 
to be O(1)]. We next derive an equation for the characteristic function 

~b(O, r) = E exp[iOz(r)] (7) 

-- {exp[--iOp(r) x/N]} E cxp[iOm(r)/x/N] 

representing the parameter I as ~/N, where ~ is O(1). This scaling of I can be 
motivated by referring to Eq. (3), in which time occurs in the dimensionless 
combination Nlt.  

The function E exp[iOM(r)/x/N] is just the generating function 

A(O, , )  = ~ p.,, exp(iOn/v/lqi (8) 
7t 0 

by definition, and satisfies 

9A ' [exp ( iO 6A .!!'aA] 
- N1/2) - -  1 ] [ - i ( N  ','2 [- N :~.'2) T 0  ' N 9021 (9) ?~r N -r- 

Hence, by Eq. (7), the function ~b(0, r) is the solution of 

94, 
9r 

- - - -  + iONl"2l~b 

1 [exp ( iO N:,,,,2) a:~b , 
- -  N - -  N I / - - 2 " )  - -  1][ - i (  Nx/2 -~- (--~j--~- " i- ipNl"24 J) 

-t- N { 9z~- -~- 2ipN '`2 94s- ..... Np2~]] 
aO" 90 ] J  

(!o) 

If we now expand the term exp( - i0 /x /N)  into a Taylor series in 0 and collect 
the coefficients of various powers of N, we find 

O(N1/2) term: iO~[t~ " p(l -- p)] ~ 0 ( l la)  

O(I) term: e4J ~b 0 2 ?~r- + 0[1 -- 2p(r)] aO- -- 2 p(T)[l -- p(r)] r ( l lb)  

Further terms are O(N -~/') or smaller. Equation ( l la)  is just seen to be 
equivalent to the deterministic equation. To solve Eq. (1 lb), we substitute a 
trial solution of the form 

4,(0, ~-) - -  exp[-- 0"F(7)/21 (12) 
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where _F'(~-) is to be determined.  The function/7(~-) is found to satisfy 

/~(~-) - r  211 - -  20(7) ]  F 0 - )  = p( ' r ) [ l  - -  p(~')] (13) 

sub jec t  to  F ( 0 )  ~- _F' 0 . T h e  s o l u t i o n  to  th is  e q u a t i o n  is f o u n d  to  be 

Foe -2" po(1 --  Po) e-~" 
F ( r )  = (1 - -  Po + poe- ' )  4 -~- (1 - -  Po + poe~) 4 

• [(1 --  po) 2 ( e * - -  1) + 2po(l --  Po) r i -  po2(I -- e-*)] (14) 

fo rpo  ~ 1 and 

F(r)  ~- [Ne-'~'/(We -" + 1)'1][~-N2(! - e - ' )  + 2 N ( 7 -  1 --  e ") + e ~ -  1 - + ]  

(15) 

for  Po ~- l, where we have neglected terms that  are O(1/N). It  follows f rom 
the representat ion of  Eq. (7) that  p~, is given by 

p,, --~ (1/27r) (=  exp[...-N~'-'l-'(~-)/21 expti(Np -- n) ~v] dcp 
r t  

~ o  

,~ (l/2rr) J exp[--Nq3F(r) /2]  cos[Np(~) --  n] ~o dcp 
- - o 0  

=- [1/(2~rN) ~/2 F(r)]  exp{--  [n - -  Np(7)]"/(2NF(r))} (16) 

that  is to say, the probabi l i ty  distribution is Gaussian,  peaked at  the deter- 
ministic mean Np(r), with a variance given by 

a ~ = N r ( r )  (17) 

This function shows an initial broadening and a final sharpening of  the peak 
as more  and more  a toms leave the excited state. The normalized mean 
intensity { I ( t ) ) / l  can be found directly in the present approximat ion  f rom 
the expression for  ~(0, 7). The  definition of  ( l ( t ) ) / I  is 

( l ( t ) ) / l~= ~ g ~ p n ( t ) =  ~ n ( N  ' 1 -- n) p~(t) 

= _ i (N~.  2 + N~.2) d [r exp(ipO v/)V)] o=o+ 

d" VN-)] o=o* + N ~ [~b exp(ipO 

~-, NZp(7)[1 --  p ( r ) ] -  N[p(T) --  /'(~-)] (18) 
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Since I = cz/N, we have for ( I ( , ) ) .  

( I ( . ) )  - :  [~Npo(l -- Po) e-*/(1 -- Po-+ Poe-*) 2] -- O(1) 

- : =  1(0) e*/(po2{1-k [l(O)/~mpo 2] e') 2) (19) 

where I(0) is the initial intensity. 
In the limit P0 =- l, this reduces to the expression derived by Degiorgio 

and Ghielmetti. (15) Notice that the first term on the right-hand side can be 
derived from the deterministic theory, while the contribution from the more 
accurate stochastic theory is of  lower order in N. In the same way that we 
have derived an expression for the relative mean intensity, we can calculate 
the relative variance 

1 
/I(T) ---,-i~(~-).S) ~- ~ gn_lgnpn('r) -- 1 

1 C 
= -- '-]F(6p 2 .... 6p 1) - - p ( l - -  p)(l -- 4p) 

N L 

which goes to zero in the limit of  large N. Thus, as is 

+ o (. 
1 p J 

(20) 

the case in the stochastic 
theory of  chemical reactions, ~2~ there are no macroscopic fluctuations that 
can be attributed to the stochastic nature of  the system for N sufficiently 
large. 

It is of  peripheral interest that in the present diffusion approximation, 
the expected number of  excited atoms is (n)  == Np, i.e., it is equal to the 
deterministic result. A more accurate calculation leads to correction terms in 
powers of  N -z, and in fact, one can derive an asymptotic expansion for the 
moments of  the form 

k t " -  /~') + N ~ N 2 -[ . . . .  (21) 

in which the p.~o) corresponds to results of  a deterministic theory and the 
/~Jl are higher-order corrections that can be calculated recursively. Because 
these corrections are not important in the context of  the present phenomena, 
details of  the calculation are deferred to the appendix. 

The second example to be analyzed in the present framework is the 
master equation describing generation-recombination noise in two-level 
semiconductors. The relevant equations were derived by Burgess (22'2'~ and a 
discussion of them is to be found in the review article by van Vliet 
and Fassett. (24~ In this system, there are two possible energy levels for a fixed 
number N of  electrons. Let n(t) electrons be the (random) number of  electrons 
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in one of the energy levels at time t and let PrO)  -~ Pr{n(t) = r}. The master 
equation describing the dynamics of this type of noise has the general form 

p .  - -  g (n  - -  1)Pn-1 - -  r (n  - -  1)P.~-1 -- [g(n) + rO0 ] p .  (22) 

where g(n)  and r(n)  are time-independent rate constants, the generation and 
recombination rates, respectively. Typical functional dependences of these 
rates are 

r(n)  = A n  ~, g (n )  = B ( N -  n) ~ (23) 

where A, B, and s are constants. For  the problems discussed in the literature, 
the parameter s has either been 1 or 2. Equation (22) differs from Eq. (1) in 
that transitions are allowed in both directions in the noise problems. The 
quantities of principal interest are n (~) ,  ~2(~) = ( [n (~)  -- (n(~))]~) ,  and 
the time-dependent autocorrelation function for the random variable 
n( t )  - -  n ( ~ ) .  Heuristic approximations to these quantities have been derived 
by Burgess and Van Vliet and Fassett that are valid in the limit of  large N. 
The results assume that r ( j )  and g ( j )  are analytic functions of  j and are 
summarized as follows: ( n ( ~ ) )  is found as the root of 

g ( ( n ) )  = r ( ( n ) )  (24) 

a 2 is given by 

,~  = r ( ( n ) ) / [ r ' ( ( n ) )  - g'((n))] (25) 

and the autocorrelation function of the random variable n (~- ) - -n (~)  is 
approximated by 

C(~') = a2e - t / r ,  T ~ [ r ' ( ( n , ) ) -  g'((n))] -1. (26) 

To my knowledge, these approximate results have not been checked by other 
means. 

Rather than repeat the analysis corresponding to Eqs. (10) and (11), I 
will merely quote the results given by Stone t2~) and lglehart, t4) These are 
that, provided g(n )  and r(b)  have the asymptotic (in N) forms 

g ( a N  -i- x x / N )  = ,~(a) N q-  fix(a) x ~ / N - q -  O(I) (27) 
r ( a N  -t- x v ~ N  -) = x(a)  N q-  fl2(a) x x/-N--} - O(1) 

the distribution of the random variable 

7 =: [n(t) -- aU]/ 'v / -N - (28) 

converges as N - ~  ~ to an Ornstein-Uhlenbeck process whose probability 
density p is the solution to 

�9 ap /a t  = a ( a ) ( a z p / ? x  '-') -k  [fi2(a) --  f i x (a ) ] (~ /?x ) (xp)  (29) 
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The solution to this equat ion is a Gauss ian  function with a mean and variance 
given by 

E { z ( t ) )  - z(O) e -la-~-~)t 
(30) 

v a r { z ( t ) }  ~ [a/(/3 z --  .B0][I -- e - e %  '~')'1 

A heuristic p r o o f  of  these results can be given that  parallels that  o f  the 
derivation of  Eq. (1 I). In order  to see how the results can be applied in a 
specific case, let us consider the forms for generat ion and recombinat ion rates 
shown in Eq. (23). 

It is s t ra ightforward to calculate f rom Eq. (23) that  

:-(aN -:- x ~,./N~) -.: ,4N"[a  ~ -? ( s x a  "~- 1/X./'N-) -7- ""] (31) 

g ( a N  I - x  v / N )  = BN'~{(I - - a )  "~ - -  [sx(I - a)"-x/x,N] 1 . . . .  } 

Hence, in order  for Eq. (27) to be satisfied, we must  assume that et and B are 
scaled like A -- A o N  ~-" and B = B o N a - f l  in which A0 and B0 are O(1). This 
scaling procedure  is also suggested by an examinat ion of  the deterministic 
kinetic equations.  Since the coefficients o f  N in Eq. (27) are equal, the con- 
stant a is determined f rom A~/"" a - -B~ /" ( I  - -  a), o r  

. = ! -  

so that  

a(a) AoBo/ (A~ ''~ -:- B~"') ~ 

,~l(a) = --sBo(l --  a)~-l, 

(32) 

(33) 
fl,,.(a) :~ sAoa" z 

With these results, we can calculate for the mean and variance of  n(t) 

( l i f t ) )  ~-. a N  i -  [n(O) -- a N ]  e x p [ - - s A ( v a " - ) t / ( l  - -  a)] 
(34) 

c~"(t) :- [Na(l --  a) /s]{ l  .... e x p [ - - 2 a ~ - ~ A u s l / ( l  - a ) ] }  

Fur thermore ,  the autocorre la t ion function calculated f rom Eq. (34) agrees 
with the result given by van Vliet and Fassett  ~2u and obtained by other  means. 
The results for  (n( t ) )  and c~2(l) given in Eq. (34) agree with the approx ima-  
tions derived by Burgess for  t == oo and extend his results to finite values of  
time. 

It is evident f rom the examples  that  we have just  discussed that  the 
diffusion approx imat ion  can be used to solve some quite general master  
equat ions provided that  the number  of  levels tend to infinity and provided that 
the rates are proper ly  scaled. For  example,  the method just  discussed is 
readily extended to the case o f  noise in three-level semiconductors  for  which 
equil ibrium variances have been calculated. (2G) The  theory so derived would 
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allow one to develop a full time-dependent theory rather than being restricted 
to the asymptotic regime. 

The method outlined here is related to that of van Kampen, ~2" truncated 
at his tirst approximation. It is not clear that his higher approximations are 
correct because they do not appear to allow the analog of Eq. (21). However, 
it may also be the case that most physical problems have such large numbers 
involved that little more than a deterministic approach ~2~ is required for 
the analysis. This is no longer true for genetic or ecological applications, 
where population sizes are order of  magnitudes lower than atomic numbers. 

A P P E N D I X :  E X P A N S I O N  OF T H E  M O M E N T S  
OF EGI. ( | )  I N  P O W E R S  OF N - I  

In this appendix, we discuss higher approximations in tile calculation 
of moments of  the supperradiance equation. That  is to say, the expectation 
(n)  calculated from Eq. (16) is (n)  = Np, which is just the result expected 
from a deterministic equation for n. When small numbers of  atoms are 
involved, we expect an expansion of the form 

<n> = N o + p, q- (p.,/N) § (paiN 2) -- . . . .  

Bailey {z'~) has given an analogous calculation for the simple epidemic; the 
present calculation represents a considerable simplification over Bailey's 
technique. 

The analysis starts by considering the generating function 

U(O, r) = ~ p,,e -n~ (A.I) 

where r =--- Nit, as in the text. This function satisfies the equation 

( 8,U ~zU ) 
8Usr N ( e ~  1) 8 0  802 

-- 0 + ~ - + g - ~ r ~ . t  . . . .  80 ! 802 

If we now assume an expansion for U in the form 

U - Uo + (U1/N)- ' , -  (U2/N 2) + "'" (A.3) 

and equate successive powers of  N -a, we find that 

8Uo _ 0 / ~,Uo , O"Uo 
8r ~,-~0- r 802 

a v ,  o ( 8 v ,  , n'.vx _ o"- + e,'Vo 
~)r \ ~ g - ~ ~ 0 2  } 2 \ 80 gO ~" ! 

(A.4a) 

(A.4b) 
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If we assume that 

Uo(O, O) = U(O, O) e -"~176 UI(O, O) -- U._,(O, 0) .... 0 (A.5) 

then the solution to Eq. (A.4a) is 

Uo(O, r) --- e -~ (A.6) 

where p(T) is given in Eq. (4) of the text. Thus, Uo(O, r) gives the result of the 
deterministic, or kinetic, theory. Higher-order terms in the sequence of 
Eq. (A.4) are all of the form 

OU ( ~U ?/2U ) 
-~---i- 0 :-:- F(O, z) (A.7) 
cr , ~!0 ~0 ~ 

where, at any order, the function F(O, r) is known from lower-order terms. 
Thus, for example, 

0 + ] 02 F~(0, ~-) = ~- (. aU,,e0 ~"voa0.., - / . . . .  2- t~0-) e-~ (A.8) 

Although it is possible to derive a solution by Laplace transforms, the struc- 
ture of Eq. (A.8) suggests that we substitute a solution of the form 

UI(O, r) --- A(r) Oe -~176 -i  B(T) O"-e -~ (A.9) 

It is easy to verify that A0-) and B0- ) must be the solutions to 

B ~- 211 - 2p('r)] B p0")[l - p0")]/2 
(A.IO) 

A -.!.- [I  - -  2 p 0 ) ]  A = - - 2 B  

subject to A(0) .= B(0) = 0. The solut ions to these equat ions are 

B('r) = ~ exp ~- "* i p(v)[l p(v)] 

• exp [2v - - 4  Jo p(v')dr'] dv (A.II) 

o - f l  ="]=' A ( ' r ) -  - 2  lexp [--T n- 2 p(v) i J0 B(v )exp  p(v') 

The combination of Eqs. (A.9) and (A.11)constitutes a generalization of 
Bailey's results and allows the proper calculation of N -a corrections to the 
moments. 
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